SDAMPP Annual Meeting

Financial Models for Medical Physics Training Programs

Room 211-212, Charlotte Convention Center
8:00 - 11:00AM, Saturday, July 28, 2012
Program Director: J. Daniel Bourland, SDAMPP President-Elect

<table>
<thead>
<tr>
<th>Start Time</th>
<th>End Time</th>
<th>Title</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:55 AM</td>
<td>8:00 AM</td>
<td>Welcome</td>
<td>Dan Bourland</td>
</tr>
</tbody>
</table>

I. Financial Models: Overview and Residency Programs

<table>
<thead>
<tr>
<th>Start Time</th>
<th>End Time</th>
<th>Title</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 AM</td>
<td>8:20 AM</td>
<td>Overview: Training Program Financial Models</td>
<td>Mike Mills</td>
</tr>
<tr>
<td>8:20 AM</td>
<td>8:45 AM</td>
<td>Diagnostic Physics Residency, Upstate Medical Physics</td>
<td>Bob Pizzutiello</td>
</tr>
<tr>
<td>8:45 AM</td>
<td>9:10 AM</td>
<td>Radiation Oncology Residency, Mary Bird Perkins Cancer Center</td>
<td>John Gibbons</td>
</tr>
<tr>
<td>9:10 AM</td>
<td>9:25 AM</td>
<td>Radiation Oncology Residency, Research Year, University of Iowa</td>
<td>John Bayouth</td>
</tr>
<tr>
<td>9:25 AM</td>
<td>9:40 AM</td>
<td>Break</td>
<td></td>
</tr>
</tbody>
</table>

II. Financial Models: Graduate Programs

<table>
<thead>
<tr>
<th>Start Time</th>
<th>End Time</th>
<th>Title</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:40 AM</td>
<td>10:00 AM</td>
<td>Certificate Program, University of Calgary</td>
<td>Peter Dunscombe</td>
</tr>
<tr>
<td>10:00 AM</td>
<td>10:20 AM</td>
<td>Doctorate of Medical Physics, Vanderbilt University</td>
<td>Charlie Coffey</td>
</tr>
</tbody>
</table>

III. Residency Application Process and Workforce Assessment

<table>
<thead>
<tr>
<th>Start Time</th>
<th>End Time</th>
<th>Title</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:20 AM</td>
<td>10:40 AM</td>
<td>AAPM Common Application and Match Program</td>
<td>John Antolak</td>
</tr>
<tr>
<td>10:40 AM</td>
<td>11:00 AM</td>
<td>Workforce Assessment</td>
<td>Mike Mills</td>
</tr>
</tbody>
</table>

Adjourn to SDAMPP Business Meeting
Outline

• Mission Statement
• Financial Plan – Executive Summary
• Important Assumptions
• Break-Even Analysis
• Projected Profit and Loss
• Projected Cash Flows
• Projected Balance Sheet
• Types of Models
• Supply and Demand of Therapy Physics Services
• Conclusion
Mission Statement

• A mission statement specifies why the program should exist at your institution.

• It may address such things as the unique role of the institution in the community, the local, regional and national need for qualified medical physicists, and the resources available at the institution.

• The University of Louisville provides a residency program in radiation oncology physics to utilize the unique resources and faculty of the Brown Cancer Center to train therapy medical physicists for clinical service to patients regionally and nationally.
Financial Plan – Executive Summary

• This section should summarize your financial projections and defend why a Residency Program makes financial sense for your institution
 • Answer why and how a Residency Program could save money
 • Answer how a Residency Program could improve quality of care
 • Answer how a residency program could help the institution grow its business
• Will you institution need more medical physicists in the future?
• What is the probability that you will spend your time and resources training physicists for your competition?
Important Assumptions

• Are your current faculty/staff physicists eager to assume mentoring in a residency program?
• Do they understand their responsibilities for directing residents, evaluating their performance, grading their competencies?
• Do they understand the benefit of mentoring and reviewing rather than performing a portion of the clinical work?
• What is the competitive condition of your clinic – growing or falling patient load?
• What are the general economic conditions in your community – are there fewer insured patients over time?
Break-Even Analysis

- The cost and benefit of supporting a residency program may be reduced to dollars and cash flow.
- At first, the program may be a drain on resources as there will be allocations for space, computers, classrooms, administrative support and etc.
- Additionally, cost in the time faculty/staff spend mentoring will outweigh the benefit of labor from the residents.
- At some point their will be a break-even point in the analysis where the cost is equal to the benefit.
- Beyond that point, the residents will provide a net benefit for the institution.
You are the administrator of a clinic treating 1,000 patients annually

<table>
<thead>
<tr>
<th># Personnel</th>
<th>No residency program</th>
<th>With residency program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physicists</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Dosimetrists</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Physics Assistants</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Physics Residents</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>
Rationale for this change

- With more hypofractionated treatments, physicists are performing more of the treatment planning and verification.
- There is correspondingly a lower workload for conventional planning and conventional IMRT.
- Residents over time will provide physics labor for the department.
- The cost to support two residents is approximately equivalent to supporting one CMD.
Productivity is cyclical
Projected Profit and Loss

• A residency program may be evaluated as a business and planned like any other business.

• One aspect of business planning is a statement of profit and loss.

• The profitability of the business may be defended by comparing how labor loss, recruitment, and retention costs of the institution may be reduced by supporting a residency program.

• Be careful to be realistic in your numbers here as some the costs and benefits are subjective and difficult to quantify.

• Profit and loss statements may be calculated during the midpoint or at the end of a term.
Personnel costs of a residency program

• Assume the program director spends 4 hours per week administrating the program (10% FTE, 5% per resident)
• Assume other faculty physicists spend 2 hours mentoring residents per week (5% FTE, 2.5% per resident)
• Assume dosimetrists spend 3% of time per week mentoring the physics residents.
• Median productivity of your residency program is exemplified at the midpoint of the residency year (0.25 FTE Resident 1 and 0.75 FTE Resident 2) or 1 FTE.
• To “purchase” this FTE, the cost is (5 x 5%) + (1 x 10%) or 35% physicist FTE and 3% X 5 or 15% dosimetrist FTE.
• The 1 FTE of Resident labor “costs” 0.5 FTE from faculty
Projected Cash Flows

- “Cash flow” as a summary of the residency program business model may be tabulated monthly or quarterly.
- It may be used as a model to project future cash flow.
- The cash flow may be negative at the beginning of a term when the new resident(s) needs additional mentoring and administrative effort. As the resident gains skills, efficiency and productivity, the cash flow should turn positive.
- New residents with demonstrated clinical experience and special expertise may substantially benefit the cash flow projections.
- FTE may be used as a surrogate for cash.
Cyclical “cash” flow in FTE

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Resident FTE</th>
<th>Faculty FTE "cost"</th>
<th>Net "benefit"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarter 1</td>
<td>0.75</td>
<td>0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>Quarter 2</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Quarter 3</td>
<td>1.25</td>
<td>0.5</td>
<td>0.75</td>
</tr>
<tr>
<td>Quarter 4</td>
<td>1.5</td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>
The most important item on the balance sheet is “cash”.

The full balance sheet includes all assets, liabilities, and capital.

The numbers may and likely will improve over time as the program becomes more efficient training residents and the residents become productive earlier in the program.

The “new worth” is the bottom line of the balance sheet: assets minus liabilities.

A balance sheet may reveal a weakness in the program; perhaps more resources are needed.
Residency Program Balance Sheet

<table>
<thead>
<tr>
<th>Current Assets</th>
<th>Current Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Assets:</td>
<td></td>
</tr>
<tr>
<td>Start-Up Grant</td>
<td>Salary and Benefits</td>
</tr>
<tr>
<td>$10,000</td>
<td>Resident 1</td>
</tr>
<tr>
<td>$10,000</td>
<td>$60,000</td>
</tr>
<tr>
<td>Resident Equipment</td>
<td>Resident 2</td>
</tr>
<tr>
<td>$10,000</td>
<td>$65,000</td>
</tr>
<tr>
<td>Salary Line:</td>
<td></td>
</tr>
<tr>
<td>From Hospital</td>
<td>Office Space/Utilities</td>
</tr>
<tr>
<td>$65,000</td>
<td>Resident 1</td>
</tr>
<tr>
<td>$1,000</td>
<td>$1,000</td>
</tr>
<tr>
<td>From Other Source</td>
<td>Resident 2</td>
</tr>
<tr>
<td>$60,000</td>
<td>$1,000</td>
</tr>
<tr>
<td>Tuition:</td>
<td></td>
</tr>
<tr>
<td>From Student</td>
<td>Malpractice Insurance</td>
</tr>
<tr>
<td>?</td>
<td>Resident 1</td>
</tr>
<tr>
<td>$1,000</td>
<td>$1,000</td>
</tr>
<tr>
<td>From Other Source</td>
<td>Resident 2</td>
</tr>
<tr>
<td>?</td>
<td>$1,000</td>
</tr>
<tr>
<td>Other Donations</td>
<td></td>
</tr>
<tr>
<td>Faculty S&B (0.5 FTE)</td>
<td></td>
</tr>
<tr>
<td>$75,000</td>
<td></td>
</tr>
<tr>
<td>Time Donation</td>
<td>Meeting Allowance</td>
</tr>
<tr>
<td>$75,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Source 2</td>
<td>Book Allowance</td>
</tr>
<tr>
<td></td>
<td>$1,000</td>
</tr>
<tr>
<td>Total Assets</td>
<td>Total Liability</td>
</tr>
<tr>
<td>$220,000</td>
<td>$210,000</td>
</tr>
</tbody>
</table>
Types of Models

- Classic Academic Center
- Academic Center with Medicare (CMS) support
- Private Provider Organization
- Private Physics Group
- DMP Program
When was the big demand?
Projected ABR TMPs through 2020
2020—If we graduate 100 TMPs

1: average work hours per week
2: gap between demanded...nical practice and supply

Gap between Demand & Supply and Average ROP Work Hours Per Week
2020—If we graduate 125 TMPs

Gap between Demand & Supply and Average ROP Work Hours Per Week
2020—If we graduate 150 TMPs
2020—If we graduate 200 TMPs

1: average work hours per week
2: gap between demanded...nical practice and supply

Gap between Demand & Supply and Average ROP Work Hours Per Week
SUNY Albany Workforce Study
Therapy Physicists

Early Career
Mid Career
Late Career
Stella Models

Mills Model

Albany Model
How many physicists must we train?

- Current number of CAMPEP Residents must increase from 40 to a minimum of 125 per year by 2020; 100 will not work!
- A more comfortable number would be 150; 200 would balance supply and demand
- If we are unable to make enough TMPs:
 - Will more medical physicists retire or leave the profession?
 - Will this impact safety and quality assurance?
 - Will this impact patient care negatively?
Conclusions

• All residency programs have a business plan, written or otherwise

• Department managers understand there are intangible benefits that go beyond the balance sheet
 • First choice at the best residents
 • Increase the local supply of physicists
 • Reduce recruiting costs
 • Reduce the salaries by having a steady stream of new physicists

• There is some flexibility in the business model so if the center undergoes significant changes the residency program may be able to adapt and survive

• Despite the current oversupply, current capacity in CAMPEP therapy physics residency programs must double by 2020
Financial Model
Diagnostic Physics Residency
Upstate Medical Physics

Robert J. Pizzutiello, MS, FAAPM, FACMP
Senior Vice President, Imaging Physics
Upstate Medical Physics –
A LANDAUER Medical Physics Partner
Outline

• Brief History of UMP residency
• Residency in a Private Practice Group
 – How it works
• Financial Model, with assumptions
• What the financial model does not show
• Conclusion
History

- 1989 RJP solo FTE
- 1990 2.5 FTE
- 2000 6 FTE
- Growth creates need for more MP’s
 - recruitment is tough and costly (time and $)
- New paradigm emerges in 2005-06
 - Joel Gray suggested Dustin Gress, MS student
 - Steve Rudin suggested Mark Wu, Ph.D student
- Convert OJT to Residency Program (more structure)
- UMP residency accredited 2010
Residency in Private Practice Group

- **Staff**
 - Office based ~ 2 days/week
 - Meetings, Journal Clubs, prep and review reports
 - Field work ~ 3 days per week
 - Drive time plus work at client sites
- **Residents apprentice with senior MP’s**
 - Preparation
 - Field work
 - Reports
 - Review
Residency in Private Practice Group

- UMP offers no courses
- Residents work under NY License
 - Limited permit
 - Direct supervision for scope of practice work
 - General supervision for data collection, after demonstrating competency and faculty signoff
 - All reports signed by licensed MP
- MQSA
 - 20 surveys under supervision, Pennsylvania approval and FDA letter until completion of ABR Part III.
Residency in Private Practice Group

• After demonstrating competency in modality, resident begins to perform independent field work
 – Maintain skills
 – Stay sharp for ABR
 – Contribute to the practice

• When resident leaves, they should be competent, with recent experience in all modalities
 – Prep for real world jobs
Why a three year program?

• AAPM hallway chat with Mike Herman
• “I am having trouble fitting everything in..”
• Hypothesis (view from 10,000 feet)
 – R1 – Expenses exceed revenue
 – R2 – Expenses equal revenue
 – R3 – Revenue exceeds expenses
 – Overall – modestly profitable, fractional FTE
Assumptions

• Initial field work
 – Observe
 – Assist senior MP
 – Primary, with senior MP assist
 – Solo
 – Demonstrated competency, different models, sites

• Independent Field Work
 – After competency signoff
 – Reports reviewed by licensed MP (scope of practice)
Financial Overview

• Fixed Program Costs, shared: $150k/year
 • Includes clinical teaching (MD, RN)
• Equipment Costs, per resident: $20k/year
 • R1 shares with senior MP’s
 • R2 and R3 have their own
• Travel costs
 • R1 rides with senior MP
 • R2 and R3 have their own cars and costs
<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Director and Assoc Dir</td>
<td>$50,000</td>
</tr>
<tr>
<td>Ed Coordinator</td>
<td>$45,000</td>
</tr>
<tr>
<td>Clinical Lectures</td>
<td>$40,000</td>
</tr>
<tr>
<td>Online journals, etc.</td>
<td>$2,500</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$12,500</td>
</tr>
<tr>
<td>Total</td>
<td>$150,000</td>
</tr>
</tbody>
</table>
Cost Summary

<table>
<thead>
<tr>
<th></th>
<th>Salary</th>
<th>Benefits</th>
<th>Business travel</th>
<th>Phone</th>
<th>Prof Travel</th>
<th>Memberships, Licenses, etc</th>
<th>Shared Costs</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>$ 50,000</td>
<td>$ 9,500</td>
<td>$ -</td>
<td>$ 600</td>
<td>$ 2,500</td>
<td>$ 1,000</td>
<td>$ 50,000</td>
<td>$ 113,600</td>
</tr>
<tr>
<td>R2</td>
<td>$ 55,000</td>
<td>$ 9,500</td>
<td>$ 4,800</td>
<td>$ 600</td>
<td>$ 2,500</td>
<td>$ 1,000</td>
<td>$ 50,000</td>
<td>$ 123,400</td>
</tr>
<tr>
<td>R3</td>
<td>$ 60,000</td>
<td>$ 9,500</td>
<td>$ 4,800</td>
<td>$ 600</td>
<td>$ 4,000</td>
<td>$ 1,000</td>
<td>$ 50,000</td>
<td>$ 129,900</td>
</tr>
</tbody>
</table>

Total | **$ 366,900**
Revenue and Cost – R1

<table>
<thead>
<tr>
<th>Qty</th>
<th>Type</th>
<th>Unit Fee</th>
<th>Net</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>RF</td>
<td>$ 400</td>
<td>$ 36,000</td>
</tr>
<tr>
<td>20</td>
<td>CR/PDM</td>
<td>$ 400</td>
<td>$ 7,200</td>
</tr>
<tr>
<td>5</td>
<td>Mammo</td>
<td>$ 1500</td>
<td>$ 6,750</td>
</tr>
</tbody>
</table>

$ 49,950

1. Approximate minimum unit fee to make program profitable
2. Assumes 10% of revenue for supervision
Revenue and Cost – R2

<table>
<thead>
<tr>
<th>Type</th>
<th>Unit Fee ¹</th>
<th>Net ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 RF</td>
<td>$ 400</td>
<td>$ 90,000</td>
</tr>
<tr>
<td>50 CR/PDM</td>
<td>$ 400</td>
<td>$ 18,000</td>
</tr>
<tr>
<td>40 Mammo</td>
<td>$ 1500</td>
<td>$ 54,000</td>
</tr>
<tr>
<td>5 Shielding</td>
<td>$ 600</td>
<td>$ 2,700</td>
</tr>
<tr>
<td>10 CT</td>
<td>$ 1,800</td>
<td>$ 16,200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$ 180,900</td>
</tr>
</tbody>
</table>

1. Approximate minimum unit fee to make program profitable
2. Assumes 10% of revenue for supervision
Revenue and Cost – R3

<table>
<thead>
<tr>
<th>Type</th>
<th>Unit Fee</th>
<th>Net</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF</td>
<td>$400</td>
<td>$54,000</td>
</tr>
<tr>
<td>CR/PDM</td>
<td>$400</td>
<td>$18,000</td>
</tr>
<tr>
<td>Mammo</td>
<td>$1,500</td>
<td>$54,000</td>
</tr>
<tr>
<td>Shielding</td>
<td>$600</td>
<td>$2,700</td>
</tr>
<tr>
<td>CT</td>
<td>$1,800</td>
<td>$48,600</td>
</tr>
<tr>
<td>MR</td>
<td>$1,800</td>
<td>$40,500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$217,800</td>
</tr>
</tbody>
</table>

1. Approximate minimum unit fee to make program profitable
2. Assumes 10% of revenue for supervision
Revenue and Cost – All

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
<th>Revenue</th>
<th>Net</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>$ 113,600</td>
<td>$ 49,950</td>
<td>$ (63,650)</td>
</tr>
<tr>
<td>R2</td>
<td>$ 123,400</td>
<td>$ 180,900</td>
<td>$ 57,500</td>
</tr>
<tr>
<td>R3</td>
<td>$ 129,900</td>
<td>$ 217,800</td>
<td>$ 87,900</td>
</tr>
<tr>
<td></td>
<td>$ 366,900</td>
<td>$ 448,650</td>
<td>$ 81,750</td>
</tr>
</tbody>
</table>

1. Addresses labor, travel and other costs
2. Excludes equipment expenses
What the model does not show

• Teaching does take time and patience
 – Typically add 25% to time for initial field work
 – Saves some time writing reports
• Influx of new blood, new training, new skill set, new ideas
• Promotes a thinking, questioning, teaching environment
• Journal clubs and CAMPEP credits benefit the entire group
• Forces seniors to re-think or recall “Why?”
• Allows practice to train MP’s in real world environment
Summary

- Brief History of UMP residency
- Residency in a Private Practice Group
 - How it works
- Financial Model, with assumptions
- What the financial model does not show
Conclusion

• A private practice residency program can be financially sustainable, subject to sufficient
 – additional work (fractional FTE)
 – fee structure
 – supervisory staff (teaching interest, skills)
 – Systems (Continuous Quality Improvement)

• Benefits to a private practice are more than just financial

• UMP is currently exploring adding additional groups to create hub and spoke model
Financial Model for the Mary Bird Perkins Medical Physicist Residency Training Program

John P. Gibbons, Jr., Ph.D.

Mary Bird Perkins Cancer Center, Baton Rouge, LA
Acknowledgements

B. Parker1,2, K. Hogstrom1,2, K. Ferachi1, J. Duhon3, C. Yang4, H. Wu5

1Mary Bird Perkins Cancer Center, Baton Rouge, LA
2Louisiana State University, Baton Rouge, LA
3OncoLogics, Inc., Lafayette, LA
4University of Mississippi Medical Center, Jackson, MS
5Willis-Knighton Cancer Center, Shreveport, LA
Residency Program Description

Motivation

• Joint Louisiana State University (LSU) and Mary Bird Perkins Cancer Center (MBPCC) M.S. and Ph.D. in Medical Physics program (CAMPEP accredited)
 – Graduates ~6 students per year

• MBPCC goal to accommodate 6 new residents per year in time for the 2014 requirement

• AAPM Report 90 recommended physicist-to-resident ratio of 2:1
 – 12 MBPCC physicists → 6 total residents maximum
 – 3 new residents per year (2-year program)
Residency Program Description

Introduction

• How do we accommodate the other 3 needed positions per year?

• Solution was to develop partnerships with regional medical physics groups to provide clinical residency training

• Hub-and-spoke model (TG-133)
 – MBPCC responsible for initial accreditation, curriculum development, resident performance tracking, scheduling exams, clinical training, etc.
 – Partner sites responsible for clinical training
Residency Program Description
Residency Consortium

• Takes advantage of facilities with good clinical physics but inadequate administrative resources to start and maintain program

• Began approaching potential partners in early 2010
 – Good support from physicists to “train our own”
 – Currently 3 partner sites in Consortium with MBPCC
Current Partners
- Mary Bird Perkins
- OncoLogics
- Willis-Knighton
- Univ. of Mississippi

Potential Partners
- Ochsner
- Tulane
Residency Program Description
Residency Consortium

• Mix of private, community, for profit, nonprofit, and academic institutions

• Offers broader range of clinical procedures, technology, equipment, etc. than typically available at single institution

• Written agreements exist between MBPCC and partner sites
Residency Program Description
Affiliate Agreements

• Generic agreement developed outlining roles & responsibilities of MBPCC and affiliate sites
• Minor changes (i.e., unrelated to residency training) made in each agreement specific to the affiliate’s program
• Completion of final agreements took ~1 year
Residency Program Description

Affiliate Agreements

• MBPCC Commitments:
 – Develop the program curriculum
 – Administration of program (Coordinating advisory committee, Resident evaluations, Oversee compliance with training requirements)
 – Work with affiliates to obtain CAMPEP accreditation
Residency Program Description
Affiliate Agreements

• Affiliate Commitments:
 – Accept one new resident per year. Affiliate sites are responsible for residents’ salary (at appropriate PGY levels), benefits, and professional development funds.
 – Appoint affiliate program director responsible for implementation of program
 – Provide appropriate resources to support the residency program (e.g., space, administrative, equipment)
Residency Program Description
Residency Placement

• LSU students receive first priority
 – Unfilled positions opened to outside applicants

• Student assigned to training site based on internal match system using National Resident Matching Program (NRMP) algorithm
 – Fair to all sites ➔ no biased selections

• Residency position not guaranteed, only the opportunity
 – Must be ranked as “acceptable” by Consortium
Residency Program Description

Resident Training & Responsibilities

• At MBPCC, residents credentialed after 1st year
 – Must demonstrate competency in areas of credentialing
 – Credentialed for duties of non-ABR physicist

• Two purposes:
 – More cost effective as resident is assigned ½ clinical rotation FTE
 – Resident becomes comfortable with independent work
Residency Program Description
Strategic Plan for Resident Enrollment

- **Planned total residents**
- **Planned MBPCC residents**
- **Planned partner site residents**
- **Actual total residents**

Projected growth from 2009 to 2017.
Residency Program Description

Program Status

- Two MBPCC residents completed program. Nine residents currently in program (3 at MBPCC, 6 at affiliate sites)

- CAMPEP-accreditation in progress.
 - Self-study submitted Fall 2011
 - Site visit completed in June 2012.
Financial Model
Inclusion of Residents in Staffing Model

• Medical Physics residents perform clinical service – they should be included in model

• Justifies resident positions on the basis of clinical demand.

• Ideal for smaller sites: i.e., if there is a need for <1 FTE, this can be fulfilled with the addition of MP resident(s).
Financial Model
MBPCC Staffing Levels

Pre-2009:
MP = # Patients/275 + 0.5 (Administration) + 3.2 (Academics, IOS)

2009-2011:
MP = # Patients/275 + 0.5 (Administration) – 0.25 * # Res + 2.6 (Academics, IOS)

2011-Present:
MP = # Patients/290 + 0.5 (Administration) – 0.25* # Res + 2.4 (Academics)
Financial Model
Institutional Cost/Resident

Simple Model

<table>
<thead>
<tr>
<th>Avg MP FTE Return per Resident</th>
<th>0.375</th>
<th>(0.25 FTE for first-year resident; 0.50 for second-year resident)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP Staff Salary</td>
<td>$160,000</td>
<td></td>
</tr>
<tr>
<td>Resident Salary</td>
<td>$44,168</td>
<td></td>
</tr>
</tbody>
</table>
Financial Model

Institutional Cost/Resident

Program Costs

<table>
<thead>
<tr>
<th>Number Residents</th>
<th>Resident Salary</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$44,168</td>
<td>$44,168</td>
</tr>
<tr>
<td>12</td>
<td>$530,016</td>
<td>$530,016</td>
</tr>
</tbody>
</table>

Program Revenues

<table>
<thead>
<tr>
<th>Number Residents</th>
<th>Staff Salary</th>
<th>Net Total</th>
<th>Net Cost</th>
<th>Net Cost/Resident</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$60,000</td>
<td>$60,000</td>
<td>($15,832)</td>
<td>($15,832)</td>
</tr>
<tr>
<td>12</td>
<td>$720,000</td>
<td>$720,000</td>
<td>($189,984)</td>
<td>($15,832)</td>
</tr>
</tbody>
</table>
Financial Model

Institutional Cost/Resident

Conservative Model

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical FTEs per Resident</td>
<td>0.15</td>
<td>(0.2 FTE for first-year resident; 0.1 FTE for second-year resident)</td>
</tr>
<tr>
<td>Admin Overhead FTEs</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Avg MP FTE Return per Resident</td>
<td>0.375</td>
<td>(0.25 FTE for first-year resident; 0.50 for second-year resident)</td>
</tr>
<tr>
<td>MP Staff Salary</td>
<td>$160,000</td>
<td></td>
</tr>
<tr>
<td>Resident Salary</td>
<td>$44,168</td>
<td></td>
</tr>
<tr>
<td>Benefit Rate</td>
<td>25.00%</td>
<td></td>
</tr>
<tr>
<td>Overhead Rate</td>
<td>25.00%</td>
<td></td>
</tr>
</tbody>
</table>
Financial Model
Institutional Cost/Resident

Program Costs

<table>
<thead>
<tr>
<th>Number of Residents</th>
<th>Staff Salary</th>
<th>Staff Benefits</th>
<th>Staff Overhead</th>
<th>Staff Subtotal</th>
<th>Resident Salary</th>
<th>Resident Benefits</th>
<th>Resident Overhead</th>
<th>Resident Subtotal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$88,000</td>
<td>$22,000</td>
<td>$27,500</td>
<td>$137,500</td>
<td>$88,336</td>
<td>$22,084</td>
<td>$27,605</td>
<td>$138,025</td>
<td>$275,525</td>
</tr>
<tr>
<td>4</td>
<td>$136,000</td>
<td>$34,000</td>
<td>$42,500</td>
<td>$212,500</td>
<td>$176,672</td>
<td>$44,168</td>
<td>$55,210</td>
<td>$276,050</td>
<td>$488,550</td>
</tr>
<tr>
<td>6</td>
<td>$184,000</td>
<td>$46,000</td>
<td>$57,500</td>
<td>$287,500</td>
<td>$265,008</td>
<td>$66,252</td>
<td>$82,815</td>
<td>$414,075</td>
<td>$701,575</td>
</tr>
<tr>
<td>8</td>
<td>$232,000</td>
<td>$58,000</td>
<td>$72,500</td>
<td>$362,500</td>
<td>$353,344</td>
<td>$88,336</td>
<td>$110,420</td>
<td>$552,100</td>
<td>$914,600</td>
</tr>
<tr>
<td>10</td>
<td>$280,000</td>
<td>$70,000</td>
<td>$87,500</td>
<td>$437,500</td>
<td>$441,680</td>
<td>$110,420</td>
<td>$138,025</td>
<td>$690,125</td>
<td>$1,127,625</td>
</tr>
<tr>
<td>12</td>
<td>$328,000</td>
<td>$82,000</td>
<td>$102,500</td>
<td>$512,500</td>
<td>$530,016</td>
<td>$132,504</td>
<td>$165,630</td>
<td>$828,150</td>
<td>$1,340,650</td>
</tr>
</tbody>
</table>
Financial Model
Institutional Cost/Resident

Program Revenues

<table>
<thead>
<tr>
<th>Number Residents</th>
<th>Staff Salary</th>
<th>Staff Benefits</th>
<th>Staff Overhead</th>
<th>Total Cost</th>
<th>Net Cost/Resident</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$120,000</td>
<td>$30,000</td>
<td>$37,500</td>
<td>$187,500</td>
<td>$88,025</td>
</tr>
<tr>
<td>4</td>
<td>$240,000</td>
<td>$60,000</td>
<td>$75,000</td>
<td>$375,000</td>
<td>$113,550</td>
</tr>
<tr>
<td>6</td>
<td>$360,000</td>
<td>$90,000</td>
<td>$112,500</td>
<td>$562,500</td>
<td>$139,075</td>
</tr>
<tr>
<td>8</td>
<td>$480,000</td>
<td>$120,000</td>
<td>$150,000</td>
<td>$750,000</td>
<td>$164,600</td>
</tr>
<tr>
<td>10</td>
<td>$600,000</td>
<td>$150,000</td>
<td>$187,500</td>
<td>$937,500</td>
<td>$190,125</td>
</tr>
<tr>
<td>12</td>
<td>$720,000</td>
<td>$180,000</td>
<td>$225,000</td>
<td>$1,125,000</td>
<td>$215,650</td>
</tr>
</tbody>
</table>
Conclusions

• A hub-and-spoke model residency program has been successfully established with MBPCC and three affiliate sites in Louisiana and Mississippi.

• The distributed model is a practical way to meet ABR mandate in a reasonable time frame.

• Incorporation of physics residents into a medical physics staffing model can help justify the cost of the program to administration.
Radiation Oncology Residency, Research Year, University of Iowa

John E. Bayouth
Problem to Solve

• Developing research opportunity for Medical Physics Residents

• Having clinical knowledgeable hands available to support research projects
Approach

• Convert 12 months of funding for research into 4 months x 3 years to extend residency by 1 year
• Have faculty apply for supporting “research track” applicants
• Make candidates aware of opportunity during recruitment.
Benefit

- Post-doc level research with solid clinical context
- Resident remains additional year, when they are most clinically productive
- They tend to continue research during “off months”
WENDY SMITH, Ph.D.
DEREK BROWN, Ph.D.
PETER DUNSCOMBE, Ph.D.

wendy.smith@albertahealthservices.ca
The Tom Baker Cancer Centre is a fully equipped, tertiary cancer treatment facility, delivering ~3000 RT courses/yr

Clinical Staff

- 11 Qualified Medical Physicists
- 18 Radiation Oncologists
- 4 Radiation Therapy Equipment Service Specialists.
- 2 Instrument makers
- 20 FTE Radiation Therapists in immobilization, treatment planning and simulation
- 45 FTE Radiation Therapists in treatment delivery
Clinical Equipment:
- 9 Varian linear accelerators
- 1 cobalt treatment unit
- 1 conventional and 2 CT simulators
- Eclipse treatment planning system (20 workstations)
- Prostate brachytherapy using the Nucletron seedSelectron
- HDR brachytherapy
- Stereotactic program with Novalis
- IMRT, IGRT, SBRT and
- participation in RTOG trials
- Total Body Irradiation
- Pediatric radiation therapy
U of Calgary: Radiation Oncology Physics

- **CAMPEP Graduate Program**
 - Radiation Oncology Physics, a specialization within Physics and Astronomy
 - Average enrollment 8-10 total (half Ph.D.)

- **CAMPEP Residency Program**
 - Incorporates the University of Calgary Post-Doctoral Diploma in Radiation Oncology Physics
 - 3 current residents in a two-year program

- **CAMPEP Certificate Program**

http://www.ucalgary.ca/rop/
U of Calgary: Radiation Oncology Physics

- **CAMPEP Graduate Program**
 - Radiation Oncology Physics, a specialization within Physics and Astronomy
 - Average enrollment 8-10 total (half Ph.D.)

- **CAMPEP Residency Program**
 - Incorporates the University of Calgary Post-Doctoral Diploma in Radiation Oncology Physics
 - 3 current residents in a two-year program

- **CAMPEP Certificate Program**

- http://www.ucalgary.ca/rop/
Certificate Program Motivation

- Many applicants to our residency programs.
- Few have the background preparation and soft skills needed to be exceptional medical physicists.
- Several applicants each year to our M.Sc. Program from people who already hold a Ph.D. in physics.
Graduate Training and Career Pathways in Medical Physics

Non-CAMPEP PhD (MS) in Med Phys or other Physics

Post Doc in Med Phys

Research/teaching/industry

PhD (MS) in CAMPEP Med Phys

CAMPEP Post-doctoral certificate in Med Phys

CAMPEP Med Phys Residency

Board Exams

QMP and clinical Med Phys career

CAMPEP DMP
Certificate Program Goals

- To prepare Ph.D. level physicists for entry into a radiation oncology physics residency program
 - Complying with AAPM Report 197s
Certificate Program Goals

- To prepare Ph.D. level physicists for entry into a radiation oncology physics residency program
 - Complying with AAPM Report 197s
 - Exposure to clinical realities
 - Hands-on, practical skill development
Certificate Program Design Considerations

- Minimize cost to students
 - 8 month program
- Minimize resource implications
Credit Courses

Fall Semester
- **MDPH 623 Radiological Physics and Radiation Dosimetry**
 - Photon and electron interactions, charged particle and radiation equilibrium, cavity theory, absolute and relative dosimetry, calibration protocols.
- **MDPH 639 Radiobiology and Radiation Safety for Medical Physicists**
 - Cell kinetics, cell survival curves, radiation pathology, fractionation, radiation safety and shielding.
- **MDSC 689.01 Medical Imaging Techniques**
 - Introduction to the theory and practical applications of medical imaging

Winter Semester
- **MDPH 625 Radiation Oncology Physics**
 - Clinical photon and electron beams, brachytherapy, treatment planning, radiation therapy devices, special techniques.
- **MDPH 637 Anatomy and Statistics for Medical Physicists**
 - Anatomy, physiology, probability, statistical inference, hypothesis testing, regression models, clinical trials, survival analysis.
- **MDPH 633 Radiation Oncology Physics Laboratory**
 - Absorption dose determination, dose descriptors, photon beam modelling, quality control.

*Students are eligible to receive credit for up to 1 course already completed at a graduate level.
Encompasses all didactic components identified by the American Association of Physicists in Medicine, Report No. 197S*
Certificate Program Design Considerations

- Minimize cost to students
 - 8 month program
- Minimize resource implications

Credit Courses + Non-Credit Learning + Clinical Experience
Non-credit learning

- Ethics and Errors (36 contact hours)
 - Discussion-based introduction to
 - ethical analyses in clinical, professional, academic and research activities
 - analysis and management of errors in clinical radiation therapy
- Journal Club (weekly)
 - Weekly, student-run workshops and debates
 - Mentored by staff
- Radiation Oncology Rounds (weekly)
- Cancer Centre Grand Rounds (weekly)
On-line competency based learning

www.rtp-learning-centre.ca
Certificate Program Design Considerations

- Minimize cost to students
 - 8 month program
- Minimize resource implications

Credit Courses + Non-Credit Learning + Clinical Experience
Clinical experience

- Clinical Rotations (Minimum of 6 half-days)
 - Hands-on in cast and mould,
 - Simulator
 - 3DCRT
 - IMRT
 - SBRT
 - SRS
 - TBI
 - Brachytherapy
Clinical experience

- Basic Linac Operations and Quality Assurance
 - Weekly lecture/laboratory sessions aimed at competency in performing monthly QA on linear accelerators, Cobalt-60, CT simulator, etc.
 - Shadowing of Physics Assistants to gain exposure to other techniques, including
 - HDR/LDR source calibration and QA
 - TBI measurements and calibration
 - Patient specific IMRT QA
Is it worth it? Costs

- Increase teaching load of 1 course per year
- Increased number of learners per course
 - Up from 2 per course
 - May require TA for marking
 - Laboratory course workload is significantly increased
- Competition for our graduate students
Is it worth it? Benefits

- Enthusiasm, maturity, experience help elevate courses
- Expanded pool of residency applicants
- Provides opportunity for career changes
- Competition for our graduate students
Cost Analysis

- Primary cost of running this program is time.
- We run a 10-student graduate program.
- Certificate program incurs incremental costs on a per-student basis.
Time to run a 10-student graduate program

Hours per year

Non-credit learning includes:
- Ethics and Errors,
- Journal Club,
- Clinical Experience includes
- Clinical Rotations
- QA training

Courses, 793

Supervision, 1040

Program Administration, 156

Lab Course, 141.6

Non-credit learning, 106.6

Clinical Experience, 88

Lab Course, 141.6

Program Administration, 156

Supervision, 1040

Courses, 793

Non-credit learning includes:
- Ethics and Errors,
- Journal Club,
- Clinical Experience includes
- Clinical Rotations
- QA training
Incremental cost of certificate program

- Courses
- Lab Course
- Non-credit learning
- Clinical Experience
- Program Administration

Legend:
- 8th Certificate Student
- 7th Certificate Student
- 6th Certificate Student
- 5th Certificate Student
- 4th Certificate Student
- 3rd Certificate Student
- 2nd Certificate Student
- 1st Certificate Student
- Grad program costs
Course fees are set by FGS at $695.16 per course for 2010-2011; we suggested a program fee of $2000 per student. We chose to run a surplus to ease University approval of the program.

All international students get a grant in the amount of the differential between Canadian and International fees, by departmental policy.

<table>
<thead>
<tr>
<th>Enrollment</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program Fees</td>
<td>$2,000</td>
<td>$4,000</td>
<td>$8,000</td>
<td>$16,000</td>
</tr>
<tr>
<td>Course Fees</td>
<td>$4,171</td>
<td>$8,342</td>
<td>$16,684</td>
<td>$33,368</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$6,171</td>
<td>$12,342</td>
<td>$24,684</td>
<td>$49,368</td>
</tr>
<tr>
<td>Expenditures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salaries</td>
<td>$0</td>
<td>$7,957</td>
<td>$11,936</td>
<td>$15,915</td>
</tr>
<tr>
<td>(1 TA)</td>
<td>(1.5 TA)</td>
<td>(2 TAs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scholarships</td>
<td>$0</td>
<td>$0</td>
<td>$1500</td>
<td>$8,000</td>
</tr>
<tr>
<td>Travel</td>
<td>$0</td>
<td>$0</td>
<td>$1000</td>
<td>$4,000</td>
</tr>
<tr>
<td>Administration Expense (27%)</td>
<td>$1,666</td>
<td>$3,332</td>
<td>$6,665</td>
<td>$13,329</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$1,666</td>
<td>$12,290</td>
<td>$21,101</td>
<td>$41,244</td>
</tr>
<tr>
<td>Excess of Revenue over Expenses</td>
<td>$4,505</td>
<td>$1,052</td>
<td>$3,583</td>
<td>$8,124</td>
</tr>
</tbody>
</table>
Risk/benefits from the student perspective

- No guarantee of a residency position
- Risk investing 8 months and more than $6,000
- Opportunity to pursue a career in Medical Physics
Conclusions

- University of Calgary has successfully established a Certificate Program in Radiation Oncology Physics.
- Costs for this program were absorbed into the general structure of the graduate program.
- We believe a quality certificate program involves much more than just taking courses.
Stop talking now, Peter.
U of Calgary: Radiation Oncology Physics

- Summer student research experience
 - Average 4-5 per summer
 - 3 Canadian, medical physics / physics undergraduates
 - 1 French summer internship in Biomedical Engineering
 - 1 machinist

- Undergraduate research project supervision
 - 1-3 per year

- Provide RO residency physics education
 - Average 7 total residents in 5 year program.
Time required to run a graduate program

- Courses are 13 weeks long, 3 h per week
 - 1st time teaching prep = 5 x lecture
 - 2nd time teaching = 1.5 x lecture time

- Laboratory
 - Primary instructor = 5 hr contact, 5 h prep x 8 labs
 - Secondary instructor = 5 hr contact, 2.5 hr prep x 8 labs

- Clinical rotation 6 hours

- Journal Club
 - 2 hr/wk * 26 weeks = 52 hours
Supervision hours

- Summer Students = 2 hr per week * 13 wks = 26 hr
- 599 Students = 2 hr per week * 13 wks = 26 hr
- 598 Students = 2 hr per week * 26 weeks = 52 hr
- MSc Students = 2 hrs per week * 52 weeks per year = 104 hr per year
- PhD Students = 2 hrs per week * 52 weeks per year = 104 hr per year
- Graduate committee members 5 hrs/ year
- Resident project supervision = 26 hr
Distance learning

- Loss of clinical opportunities
- Increased convenience for students
- Little direct benefit to our centre with our budget model
DMP Program Suggested Financial Models

CHARLES W. COFFEY, II, PHD
DMP PROGRAM DIRECTOR
VANDERBILT UNIVERSITY
NASHVILLE, TN
Professional Doctorate (DMP) White Paper
Evolution of DMP Program at Vanderbilt
DMP Program Current Status
Financial Models for Graduate Education
DMP HUB and SPOKE Model
Conclusions
DMP Rationale: 2014 Residency Requirements

- Newly Entering Medical Physics Graduate Students for Fall, 2013
- Required to complete a CAMPEP-accredited (24 Month) Medical Physics Residency prior to sitting for Part II of the ABR Exam

- Estimated 175-225 medical physics graduates per year
- Guesstimation: 80% desire to enter clinical work force
- 140-180 medical physics graduates desire to enter clinical work force per year
- Estimated 85 medical physics residency slots per year

- Math Doesn’t Work...

- DMP offers a potential, yet partial solution to the Above Math Problem
Report included Positive and Negative Implications/Impact on students, education programs and the profession of medical physics.

Report Presented and Received by AAPM BoD on July 31, 2008

Much discussion has taken place among AAPM Members, Educators, and Students with regards to the +/- need/implementation of the DMP Concept

Vanderbilt has the only DMP Program to date

Several other programs are considering the concept at their institutions
Evolution of DMP Program at Vanderbilt

- Faculty Approval: Depts of Radiation Oncology and Diagnostic Radiology
- SOM Dean and Chairman’s Committee Approval
- Vanderbilt Board of Trust Approval – 2009
- CAMPEP-accreditation – Fall, 2009
- Student Interest – Fall, 2007 (3 students express willingness to be Pioneers)
- Getting “Ducks in a Row”
 a. Credit hours & Tuition rates
 b. Medical Physics courses added & Electives sought
 c. Alternate Pathway
- Three students enter 3rd Year of DMP Program in Fall, 2009
- Nine students have completed graduation requirements as of June, 2012
- Present Student Numbers:
 Four – 4th Year DMPs Four – 3rd Year DMPs
 Five – 2nd Year DMPs Five – 1st Year DMPs
DMP Program Pillars

- Quality
- More than MS Degree + 2-Yr Residency
- Alternate Pathway for Vanderbilt MS Medical Physics Graduates
 a. ABR Board Certified
 b. Return to Campus and Take the Extra Didactic Class Hours (12 – 15)
 c. Complete the Required Research Project (could be off-site)
- Professional Degree
 a. May Allow Graduates to Pursue an Academic Clinical Appointment
 b. May Allow Employer More Leverage for Salary Negotiations within HR
 c. May Result in Additional Employee Perks (ie, travel, dues, etc)
 d. CAVEAT: Will Not Allow Graduates to Pursue a Primary Research PhD Academic Appointment
Current Status of Vanderbilt DMP Program

- Continuous Program
 - Start August, 2008......Completion June, 2012
 July 1, 2010 to June 30, 2012 (Twenty four months of clinical training)

- Three Terms per Year: Fall, Spring, & Summer

- DMP: Professional Degree
 - 50 Didactic credit hrs + 6 Practicum credit hrs + 6 Research Project credit hrs + 30 Clinical Rotation credit hrs

- MS: Basic Science Degree
 - 32 Didactic credit hrs + 6 Practicum credit hrs
Financial Models

- Current Financial Models
 - Basic Sciences: Graduate students receive tuition & stipend
 - Professional: Graduate students do not receive tuition & stipend
 - PhD Medical Physics: Graduate students receive tuition & stipend
 - MS Medical Physics: Graduate students do not receive tuition & stipend

- This financial matter of bearing one’s own educational costs for a professional degree becomes more of an issue when considering/comparing the new 4-yr DMP Degree versus the 2-yr MS Degree. This dollar issue is a hard sell for both students and those institutions considering implementation of DMP graduate programs.
DMP HUB and SPOKE Model

Assumptions:

- 4 Yr-DMP Programs Will Rise (or Fall) with respect to an Appropriate Model
- Finances Have to Work for Both Institution and the Student
- Clinics are limited as to the maximum of Students in Years 3 & 4 (Funnel⁻¹ theory)

Shared Financial Model Concept (DMP HUB and SPOKE Model)

S Tuition/living expenses Years 1 & 2 (student)
I Potential teaching, lab assistants opportunities (through the institution)
S Tuition/living expenses Year 3 (student)
I Reduced tuition Year 4 (similar to research hours during dissertation years)
S Student serves in community physics practice Year 4
C Community/Teaching Institution enters financial agreement for DMP 4 with part of Finances returned to DMP 4 as a salary
I With fewer DMP 4 students on site, the teaching institution has less overhead costs and could perhaps further reduce cost of degree
DMP HUB and SPOKE Model (cont)

- **Years 1 & 2:** at HUB Institution
 - completes didactic classroom and laboratory requirements
 - completes an equivalent 300-hr Practicum experience

- **Year 3:** at HUB Institution
 - completes 1-yr of Clinical Rotation Training including observation, participation, and competency tasks

- **Year 4:** at SPOKE Institution (lower tuition costs & include student salary)
 - completes 1-yr of Clinical Rotation Experience (same rotations as Year 3) including participation and competency
Benefits of the DMP HUB and SPOKE Model

- Education Institution may be able to **reduce tuition** costs during Year 4

- Education Institution may be able to **admit more professional students** in Years 1, 2, & 3 in that institutional resources are not required in Year 4

- Student gets the **opportunity to participate** in a SPOKE non-academic physics practice, acquire skills, and share in assignments and problem solving perhaps not as readily available **at the HUB**.

- Financial and Relational Contracts between the HUB and SPOKE may allow **dollars for student salary**

- SPOKE physics practice **gains a 1-yr trained student resident** without the organizational difficulty of administering a residency program and the 2-yr commitment of significant financial resources

- A shared financial model resulting in a net reduction of out-of-pocket student expenses may assist in **allowing sufficient numbers of students to choose non-PhD clinical careers in medical physics**.
Negotiations Issues HUB and SPOKE

- Quality
 Faculty/Staff
 Equipment and Technology
 Methodology/Procedures/Patient #’s

- Legal/Administrative/Financial Issues
 Responsibility: Indemnification/Malpractice/Student Conduct/HIPPA
 “Whereas” and “Therefore”
 Payment & Where are dollars going?
 Yearly contract

- HUB is the CAMPEP-accredited Entity
 SPOKE(S) reported to CAMPEP; possible SPOKE(s) site visits
 Ultimate responsibility resides with Program Director
 Day to Day assignments/duties resides with Community Physicist

- DMP Student Remains Vanderbilt Student
 Clinical Evaluation resides with Community Physicist
 Ultimate responsibility resides with Program Director
 CAMPEP will hold HUB accountable for DMP Training
Advantages to STUDENT

- Reduced Tuition
- Salary in Year 4 of DMP
- Opportunity to Participate in Community Physics Practice at SPOKE
- Potential Opportunity to be More “Hands On” at SPOKE
- Show Work Quality, Dependability and Character to Potential Employer(s)
- Permits Easier Transition to that 1st Job
Advantages to SPOKE

- Residency Positions Requirements
 No CAMPEP application to complete
 Minimum paperwork and administrative overhead
 A one-year commitment, NOT a two-year commitment
 CAMPEP would prefer two residents in alternate years

- Quality, Trained Worker for Fewer Salary Dollars
 DMP 4 student will have one-full year of clinical training

- Recognition as Partner in Education with HUB

- Potential Opportunity to Assist with CME/MOC Requirements

- Use DMP Position as “Trial” Employment for Future Hires
Advantages to HUB

- There is a Maximum # of DMP Students that a Single Clinic Can Support
- Maintain a Viable Program with Sufficient Student Numbers
- Reduce Education/Training Overhead (Year 4)
- Establish and Cultivate Education Partners within the Community
- Maintain Recruiting Edge for Students
 - Offer Students Opportunity for Salary (Year 4)
 - Offer Students Opportunity for Experience in Community Practice
- Graduate Students with Enhanced Training & Experience Who
 Rank & Compete Well in the Job Market
Conclusions

- Worthy Goals of the DMP Clinical Medical Physics Education Process
 - Graduate Quality, Trained and Experienced Student Residents
 - Meet the Man Power Needs
 - Keep the Program/Organization Flexible to Meet New Challenges
 - Contain Costs within Attainable ALARA Limits
AAPM Common Application and Match Program

John A. Antolak, Ph.D.
Chair, WGCMPR
Outline

• Common Application Program (CAP)
 • What is it and how does it work?
 • How did it go last year?

• Future Directions
 • Can we do a match?
What is CAP?

• Common Application Program
 • Initiative of AAPM WGCMPR
• Web-based residency application
• Open to any program, and any applicant
Welcome John A. Antolak

Important Message! Please ensure that your browser meets the requirements listed on the Applicant Home or in the FAQ. Failure to use a compatible browser and recommended settings (e.g., blocking popups or disabling javascript) may cause errors generating the application files. Some popular browser plugins (e.g., AdBlocker) may also interfere with javascript functionality. Be sure to check your documents on the Documents page to make sure they are correct. You are responsible for making sure that your application is complete and accurate.

The CAP (Common Application Program, or Common Application Process) is a program started by the Workgroup for Coordination of Medical Physics Residency Programs (WGCMPR) to do three things.

- Make it easier for applicants to apply for residency programs.
- Reduce administrative burden for residency programs that have to process these applications.
- Provide a mechanism that will allow programs to work towards a match system, putting applicants in their preferred programs, and getting preferred applicants into participating programs. The match system is currently used by medical residents, but is not currently in place for physics residents.
CAP Applicant Information

- Name, address, contact information
- ABR certification status
- Disclosure of criminal behavior, academic violations, and/or licensure actions
- Employment history
- Military service history (if applicable)
- Education (undergraduate and graduate)
 - CAMPEP prerequisites
CAP Applicant Information

- Names of 3 references
 - Including one from current advisor or department head
- Personal statement
 - Instead of a cover letter
- Uploaded CV
- Official Transcripts and a copy of TOEFL results (if applicable)
 - Mailed to AAPM Headquarters
Applicant: John Applet Antolak-Test
Submitted: 12/10/2011 12:00 AM EST
Application file includes the following attachments:

Personal Statement: yes
CV: no
Transcripts: no
TOEFL: no
Reference letters: 3
Clinical Medical Physics Residency Program Common Application

Start Date Desired: 7/1/2012
Earliest Date Available: 2/1/2012

Personal Information

Name: Antolak-Test, John "Applet"
Last/Family/Surname: Antolak-Test
First/Given: John
Middle:
Maiden:

US Social Security Number (optional) 628-32-6489

Present Mailing Address
4112 Manorwoods Ct NW
Rochester, Minnesota 55901 United States

Permanent Address (if different)
Radiation Oncology, Desk R 200 First St SW
Rochester, MN 55905 USA

Preferred Phone: 507-255-3553
Cell Phone: 507-722-1524
Work Phone:
E-mail (primary): jaa-cap@antolakhome.net
E-mail (alternate): jaa-captest@antolakhome.net

Gender (optional) Male
The CAP (Common Application Program, or Common Application Process) is a program started by the Workgroup for Coordination of Medical Physics Residency Programs (WGCMPR) to do three things.

- Make it easier for applicants to apply for residency programs.
- Reduce administrative burden for residency programs that have to process these applications.
- Provide a mechanism that will allow programs to work towards a match system, putting applicants in their preferred programs, and getting preferred applicants into participating programs. The match system is currently used by medical residents, but is not currently in place for physics residents.

If you are already registered in the CAP, please click here to go to the program pages (or click Login in the left side menu). If not, click here to register.

Browser requirements:

- Recommended Browsers include:
 - Internet Explorer 8 (or above)
 - Firefox 5 (or above, for Mac and Windows)
 - Chrome 11 (or above, for Mac and Windows)
 - Opera 10 (or above, for Mac and Windows)
 - Safari 5 (for Mac and Windows)
- Recommended minimum screen resolution: 1024 x 768
- Other recommended settings:
 - Enable JavaScript
 - Allow Pop-up Windows from AAPM.ORG
 - Browser plugin to display PDF
 - Accept/allow Browser cookies from AAPM.ORG
CAP—Adding a Program

When adding a program, you can specify any opening and deadline dates you wish. If you specify an opening date in the future, your program will not be listed in the program list with available openings until that date. Applicants will be able to bookmark your program at any time, but will not be able to submit applications until the opening date. Changes to the program information can be made at any time. Once the opening date has passed and any applicant has submitted an application to your program, you will be unable to delete the program. After the deadline has passed, applicants will no longer be able to apply (although you are free to change the deadline at any time).

Edit Program

Please fill out the following form (all fields required)

Program Name: Mayo RadOnc Clinical Medical Physics Fellowship

Description (text only, no html or links allowed, max 2000 characters)

The Division of Medical Physics in the Department of Radiation Oncology at Mayo Clinic, Rochester, MN invites applications for positions in our CAMPEP-accredited clinical medical physics residency and fellowship program. Individuals will receive training in all essential aspects of clinical radiation oncology physics as outlined by the American Association of Physicists in Medicine and required for American Board of Radiology certification in Medical Physics. The 3-year fellowship commences in July 2012, and also includes clinical research effort under the supervision of one of the faculty members. Qualified individuals should possess a recent Ph.D. in medical physics or experimental physics and have a strong desire to thrive in...

Click here for Programs without Current Openings

- Length of program (in months): 36
- Current openings: 4
- Size of Program: 9
- Link to advertisement: http://www.mayo.edu/masm/radonc-fellow-rch
- Program Website: http://www.mayo.edu/masm/radonc-fellow-rch

Degree requirements:
- PhD only
- MS only
- MS or PhD

CAMPEP graduate program required: Yes
CAP—Institutional Users

The American Association of Physicists in Medicine

CAP — Institution Home

User Login Information

This page lists all users that can access your institutional and program information. To add a non-AAPM member as a user, you will need to enter the name (first and last) and email address for the user. Then you will need to create a user ID and password for the user. For AAPM members, entering the AAPM member number and last name will copy the login information from the AAPM user database to the CAP.

Please keep in mind that the CAP user database is separate from the AAPM user database. If you change your AAPM password (AAPM members), you will need to separately change your CAP password. If you forget your CAP password, any other user that can access your institutional data can reset the password for you.

<table>
<thead>
<tr>
<th>LoginID</th>
<th>AAPM ID</th>
<th>FirstName</th>
<th>LastName</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>308</td>
<td>308</td>
<td>John</td>
<td>Antolak</td>
<td>Antolak.John@mayo.edu</td>
</tr>
<tr>
<td>1922</td>
<td>1922</td>
<td>Michael</td>
<td>Herman</td>
<td>herman.michael@mayo.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Julie</td>
<td>Mueller</td>
<td>mueller.julie@mayo.edu</td>
</tr>
</tbody>
</table>

[Click here to add a user] [Click here to add AAPM user]
CAP History

- Application information gathered by WGCMPR starting in 2009
 - Several iterations
- Web application developed by AAPM HQ staff, starting Aug 2011
- Started taking applicant registrations in Sep 2011
 - Applicants started entering data shortly afterwards
- Opened to institutions early Dec 2011
 - Original plan was Nov 2012
CAP Statistics (as of Mar 16, 2012)

• 150 unique applicants
 • 79 were AAPM members

• 97% had 2–3 references
 • 89% had 3 references

• 861 applications purchased
 • 121 not used
CAP Statistics (as of Mar 16, 2012)

- 14 programs
 - 1 received 0 applications due to an error setting program start date
- Average # of applications: 66
 - Range 28–97
CAP Fee Structure

• Programs paid $200
 • Nominally 1 year

• Applicants paid
 • $20 for one application credit
 • $50 for 5 credits
 • 30% submitted 5 applications
 • 16% submitted 10 applications
Upcoming Changes

• Uploaded transcripts
 • Scanning transcripts was a burden on AAPM HQ staff
 • Applications (except for reference letters) available immediately upon submission

• Improved reference security
 • AAPM members will be logged as such
 • Other references will be logged by IP address
Gentleman’s Agreement

• For July recruitments to therapy residency programs
• Application deadline not earlier than Dec 15
• Offers no earlier than first Monday in March (new for 2013)
• Applicants have maximum of 24 hours to accept an offer (new for 2013)
• Relies on program and applicant cooperation
How does a match work?

• Programs can only offer within the match system

• Applicants can only accept within the match system

• Programs and applicants that violate the rules are subject to sanction

• Works well if almost all programs and applicants use the same system, same deadlines, common application
 • NRMP match requires 75% program participation, 75% available positions
Medical Physics Residency Match?

• Probably not at this time
 • Graduate degrees can be awarded at any time during the calendar year
 • Some residency programs like to start everyone at the same time
 • Some programs juggle start dates to accommodate graduate students
 • Many residency programs are unable to use the CAP at this time
 • A common application in some form is necessary for a match system
Under discussion for the CAP

- Constrained application deadlines
 - 2–3 recruitment cycles per year
- Automated offer system
 - Programs would rank applicants
 - CAP would send out and accept offers
 - Offer acceptance would remove applicant from other rank lists
- Recruitment completed very quickly
Thank You

• **WGCMPR meeting today**
 • 12–2 pm
 • Tryon South - 2nd Floor
2. Workforce Assessment

Residency Application Process and Workforce Assessment
Michael D. Mills, PhD

SDAMPP annual Meeting
Charlotte, NC
Presentation Outline

• Current Manpower Resources and Models
 • Safety is no accident – ASTRO model
 • ASTRO – ACR database
 • Abt Model
 • Battista Model
 • Dosimetry Workforce Study

• Current Manpower Initiatives
 • IAEA
 • AAPM Diagnostic Workforce Study
 • Implications of workforce assessment for residency programs

• Conclusions
Objectives

1. Understand the need to establish recommended staffing levels in therapy physics and imaging physics.

2. Understand the information documented in the manpower and staffing resources.

3. Understand a current model that predicts the supply and demand for therapy physicists through 2020.

4. Apply the information contained in these studies to the management of CAMPEP – accredited academic and residency programs.
Current Manpower Resources and Models
Sources and Initiatives for US Staffing Recommendations in Radiation Oncology

• ASTRO – safety is no accident
• ASTRO – ACR database
• ABT III report
• Battista model - Canadian workforce study
• AAMDD workforce study
Where is the Staffing Data?

SAFETY IS NO ACCIDENT
A FRAMEWORK FOR
QUALITY RADIATION
ONCOLOGY AND CARE

The Abt Study of
Medical Physicist Work
Values for Radiation
Oncology Physics
Services: Round III

Final Report

March 2008

Prepared for
American College of Medical
Physics
1891 Preston White Drive
Reston VA 22091

American Association of Physicists
in Medicine
Number One Physics-Ellipse
College Park MD 20740

Prepared by
Abt Associates Inc.
4550 Montgomery Avenue
Suite 800
Bethesda, MD 20814
ASTRO – Safety is no accident

- AAPM approved a version that contained a recommendation of one physicist per 250 patients treated annually.
- The ASTRO board removed this line from the printed version of the document.
- A physics staffing matrix was included.
ASTRO – safety is no accident

• Culture of ASTRO
• Highest leadership and Staff make policy
• The process is less inclusive than you find in the AAPM
• Decisions take a long time
• Projects take a long time (especially collaborative projects)
• It is sometimes difficult to get information
• Information is often released slowly and deliberately

• There was some mild interest in the ASTRO matrix, but some resistance as well.
• The objections were:
 • The model is too complex, even if a filled out example is offered
 • The model is insufficiently validated – is should be published before referenced
 • The model may not be appropriate for certain institutions
ASTRO Model

- Validated for Abt III Matrix Results
- Validated for the AAMD Workforce Survey Matrix Results
- Not validated for the ACR/ASTRO Accredited Program Database
- Future Abt studies may be designed to refine and validate this methodology
Staffing Requirements in a Radiotherapy Department

<table>
<thead>
<tr>
<th>Services - Number of Units or Licenses*</th>
<th># of systems*</th>
<th>Relative FTE Factor</th>
<th>Required FTE</th>
<th>Required Total FTE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Physician</td>
<td>Dosimetrist</td>
<td>Physician</td>
</tr>
<tr>
<td>Multi energy accelerators</td>
<td>4</td>
<td>0.25</td>
<td>0.05</td>
<td>1</td>
</tr>
<tr>
<td>Single energy accelerators</td>
<td>0</td>
<td>0.08</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>Tomotherapy, CyberKnife, GammaKnife</td>
<td>1</td>
<td>0.3</td>
<td>0.03</td>
<td>0.3</td>
</tr>
<tr>
<td>Cobalt Units, IMRT, PACS, EMR & Contouring</td>
<td>0</td>
<td>0.08</td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>Orthovoltage and Superficial units</td>
<td>0</td>
<td>0.02</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>Manual brachytherapy; LDR Seed Implants</td>
<td>1</td>
<td>0.2</td>
<td>0.03</td>
<td>0.2</td>
</tr>
<tr>
<td>HDR brachytherapy</td>
<td>1</td>
<td>0.2</td>
<td>0.02</td>
<td>0.2</td>
</tr>
<tr>
<td>Simulator, CT-Simulator, PET, MRI Fusion</td>
<td>1</td>
<td>0.05</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>Computer planning system (per 10 workstations)</td>
<td>1</td>
<td>0.05</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>HDR planning system</td>
<td>1</td>
<td>0.2</td>
<td>0.01</td>
<td>0.2</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td></td>
<td>2.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># Patient Procedures **</th>
<th># of patients**</th>
<th>FTE Effort**</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Beam RT with 3D planning</td>
<td>500</td>
<td>0.003</td>
</tr>
<tr>
<td>External Beam RT with conventional planning</td>
<td>200</td>
<td>0.0012</td>
</tr>
<tr>
<td>Segmented source Brachytherapy (LDR & HDR)</td>
<td>100</td>
<td>0.008</td>
</tr>
<tr>
<td>Unsegmented source therapy</td>
<td>25</td>
<td>0.008</td>
</tr>
<tr>
<td>IMRT, IGRT, SRS, TBI, SBRT</td>
<td>400</td>
<td>0.008</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>4.39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimated Total (Phys & Dosim) FTE Effort***</th>
<th>FTE Effort***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education & Training (FTE)</td>
<td>0.1</td>
</tr>
<tr>
<td>Generation of internal Reports (FTE)</td>
<td>0.1</td>
</tr>
<tr>
<td>Committees & Meetings; Inc. Rad. Safety (FTE)</td>
<td>0.1</td>
</tr>
<tr>
<td>Administration and Management (FTE)</td>
<td>0.5</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

* Enter the sum of the number of therapy units, imaging systems, workstations, support systems and technologies in each category.

** Enter the annual number of new patients that undergo each of the following planning and treatment deliver procedures; count each new patient one time.

*** Enter the annual total medical physicist and
Using the ASTRO sample worksheet

- The model was validated using the Abt II data (2007)
- At that time, SBRT, SRS, SRT and other time intensive special procedures were mostly practiced in large centers
- IMRT market penetration was less than today
- The worksheet works reasonable well for those centers with 40% or less specials and IMRT procedures
- However, it tends to overestimate physics staffing if IMRT and other special procedures make up 50% or more of the total patient service mix
Practice venue largely does not matter.

Community based centers, Freestanding centers and University centers require similar staffing.

The only variable that affects staffing is the number of patients treated in the facility on an annual basis.

Statistically, the fewer the number of patients treated annually in a center, the more generous is the staffing.

In the ASTRO-ACR database, staffing numbers are reported for facilities treating > 600, 200-600 and < 200 patients annually.
What does the ASTRO – ACR Database and Abt Report Reveal?

![Graph showing data for new patients in different categories](chart.png)
How can we use the Abt III Report?

“I hear you worked so many hours you passed out for 20 minutes. I just thought I’d make it clear that I’m not paying you for those 20 minutes.”
How many patients annually per Qualified Medical Physicist

- Abt I 1995 421
- Abt II 2003 325
- Abt III 2008 304
Median overall staffing information in 2007

<table>
<thead>
<tr>
<th>Position</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td># Patients treated per year</td>
<td>595</td>
</tr>
<tr>
<td># Qualified Medical Physicists</td>
<td>2.0</td>
</tr>
<tr>
<td># Radiation Oncologists</td>
<td>3.0</td>
</tr>
<tr>
<td># Dosimetrists or Junior Medical Physicists</td>
<td>3.0</td>
</tr>
<tr>
<td># Maintenance Engineers</td>
<td>0.0</td>
</tr>
<tr>
<td># Radiation Therapists</td>
<td>8.0</td>
</tr>
<tr>
<td># Radiation Oncology Nurses</td>
<td>3.0</td>
</tr>
</tbody>
</table>
What is the difference between defending staffing and work?

- Staffing applies to the entire medical physics program, work applies only to the QMP.
- Staffing may include non-professional effort, QMP work is professional in nature.
- For professionals, work is directly related to compensation with respect to services provided, staffing is not.
How can we use the Abt III Report?

• The Abt Associates report empowers the medical physicist to negotiate from a middle ground for compensation - between direct billing and a non-professional salary

• We can use the data in Abt III to negotiate with employers in the same manner that Physicians negotiate with CMS – by using the time and work required to deliver patient procedures
Medical physics staffing for radiation oncology: a decade of experience in Ontario, Canada

Jerry J. Battista,¹ Brenda G. Clark,²a Michael S. Patterson,³
Luc Beaulieu,⁴ Michael B. Sharpe,⁵ L. John Schreiner,⁶
Miller S. MacPherson,⁵ Jacob Van Dyk⁴

Medical Physics,¹ London Regional Cancer Program, London, ON; Radiation Medicine Program,² The Ottawa Hospital Cancer Centre, Ottawa, ON; Juravinski Cancer Centre and McMaster University,³ Hamilton, ON; Université Laval,⁴ Québec, QC; Radiation Medicine Program,⁵ Princess Margaret Hospital and University of Toronto, Toronto, ON; Cancer Centre of South Eastern Ontario,⁶ Kingston, ON, Canada
brclark@toh.on.ca
Clinical Procedures and Services

<table>
<thead>
<tr>
<th>Item</th>
<th>Workload</th>
<th>Physicist</th>
<th>Physics Assistant</th>
<th>Dosimetrist</th>
<th>Treatment Planner</th>
<th>Electronics</th>
<th>Engineering</th>
<th>Mechanical</th>
<th>Computer Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>All radiation beam/source therapy - includes external beam therapy and brachytherapy (cases/yr)</td>
<td>1060</td>
<td>0.54</td>
<td>0.22</td>
<td>2.16</td>
<td>0.00</td>
<td>0.22</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complexity bonus increment for inverse IMRT including tomotherapy, clinical trial protocols, gated beams, 4D plans, multi-modality image fusion (cases/yr)</td>
<td>300</td>
<td>0.45</td>
<td>0.00</td>
<td>0.90</td>
<td>0.00</td>
<td>0.00</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External beam - special procedure bonus increment (total body photon or electron, radiosurgery) (cases/yr)</td>
<td>100</td>
<td>0.50</td>
<td>0.25</td>
<td>0.10</td>
<td>0.00</td>
<td>0.10</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachytherapy - LDR or HDR (fractions/yr)</td>
<td>100</td>
<td>0.20</td>
<td>0.05</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachytherapy - interstitial seed implants (cases/yr)</td>
<td>40</td>
<td>0.20</td>
<td>0.08</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Radiotherapy Equipment Support

<table>
<thead>
<tr>
<th>Item</th>
<th>Workload</th>
<th>Physicist</th>
<th>Physics Assistant</th>
<th>Dosimetrist</th>
<th>Treatment Planner</th>
<th>Electronics</th>
<th>Engineering</th>
<th>Mechanical</th>
<th>Computer Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of accelerators (all linacs, including tomotherapy and robotic linacs)</td>
<td>5</td>
<td>1.00</td>
<td>1.50</td>
<td>0.00</td>
<td>1.50</td>
<td>0.50</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major ancillary RT equipment: TPS (1 per vendor per 10 workstations), PET-CT, MR-Sim, 4D CT-Sim, HDR</td>
<td>6</td>
<td>0.60</td>
<td>0.30</td>
<td>0.00</td>
<td>1.20</td>
<td>0.30</td>
<td>0.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor ancillary RT equipment: X-ray Sim, CT-Sim, LDR unit, Cobalt unit, Gamma Knife, orthovoltage unit, ultrasound unit, gating/motion monitoring device</td>
<td>4</td>
<td>0.20</td>
<td>0.10</td>
<td>0.00</td>
<td>0.40</td>
<td>0.20</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Training and Education of Specialists

<table>
<thead>
<tr>
<th>Item</th>
<th>Workload</th>
<th>Physicist</th>
<th>Physics Assistant</th>
<th>Dosimetrist</th>
<th>Treatment Planner</th>
<th>Electronics</th>
<th>Engineering</th>
<th>Mechanical</th>
<th>Computer Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation Oncology Residents*</td>
<td>6</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiation Therapy Students*</td>
<td>5</td>
<td>0.12</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Physics Residents*</td>
<td>2</td>
<td>0.20</td>
<td>0.00</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Physics Graduate Students*</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SubTotals

- Physicist: 4.27
- Physics Assistant: 2.50
- Dosimetrist: 3.98
- Treatment Planner: 3.10
- Engineering: 1.32
- Mechanical: 0.80

Total Required Staff of Each Type: 6.78
Total Physics Staff (Including dosimetrists/Tx Planner): 19.77

Current Staffing (with approved budget)

- Physicist: 6.00
- Physics Assistant: 3.00
- Dosimetrist: 6.00
- Treatment Planner: 2.00
- Engineering: 1.00
- Mechanical: 1.00

Predicted Staff per Linac

- Physicist: 1.36
- Physics Assistant: 0.55
- Dosimetrist: 0.88
- Treatment Planner: 0.68
- Engineering: 0.29
- Mechanical: 0.18

Cases per predicted staff

- Linac: 159.30
- PET: 389.42
- CT Sim: 244.22
- LDR: 313.55
- Cobalt: 73.80
- Other: 1218.05
Population: 34 Million
Inverse slope:
Ontario: 278 treated cases/physicist
Canada: 255 treated cases/physicist
Algorithm Predictive Power

Canadian Survey

- Detailed algorithm prediction
Ontario study provides a methodology for determining staffing requirements

- Validated by trans-Canada survey
- Works in the Canadian context
- Includes considerations for various support staff
- The simple formula could be adapted by deriving new ratios for various special procedures
Current Manpower Initiatives
Joint DMRP/ARBR/NM Consultants’ Meeting
On Staffing Requirements in Radiation Medicine

IAEA – Vienna, Austria

- Meeting dates:
 - January 31 – February 2, 2011
 - October 31 – November 4, 2011
- 18 International Representatives
- Embraces all staff in radiation medicine
- Staffing categories in radiation oncology are based on work categories, not profession categories as different professions may perform the same work:
 - Radiation oncology
 - Medical physics
 - Radiation therapy
 - Treatment planning
 - Radiation oncology nursing
 - Information technology
 - Engineering mechanical
 - Engineering electronics
The philosophy of the IAEA group was to divide the staffing by type of work and to determine all of the components of that type of work.

The Abt and Battista staffing numbers were roughly equivalent, but the Canadian institutions tend to staff somewhat more generously than their US counterparts.

As a first approximation, it was felt that the Abt data provided the best patient procedure manpower estimates and the Battista - Canadian data provided the best equipment-based manpower estimates.
Merging the Abt and Battista data proved problematic

- The Abt data was stripped of non-procedural (equipment) time and work
- The Battista data was stripped of patient time and work
- The result of adding these two is that staffing for medical physics work was overestimated
- The conclusion is that either the Battista model overestimates machine activities at the expense of patient procedure time and work, or the Abt model overestimates patient procedure time and work at the expense of machine services, or both

- The ASTRO model seemed to provide better results, but was considered to simplistic a model to be of use.
<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>Radiation Oncology</th>
<th>Medical Physics</th>
<th>Radiation Therapy</th>
<th>Treatment Planning</th>
<th>Radiation Oncology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days per week</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Total hours per day</td>
<td>310</td>
</tr>
<tr>
<td>Total hours per week</td>
<td>2170</td>
</tr>
<tr>
<td>Total hours per year</td>
<td>11620</td>
</tr>
</tbody>
</table>

Tasks related directly to patient care (%)

<table>
<thead>
<tr>
<th>Number of Procedures</th>
<th>h/task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.2</td>
</tr>
<tr>
<td>2000</td>
<td>0.8</td>
</tr>
<tr>
<td>3000</td>
<td>1.2</td>
</tr>
<tr>
<td>4000</td>
<td>1.6</td>
</tr>
<tr>
<td>5000</td>
<td>2.0</td>
</tr>
</tbody>
</table>

radiation oncology

<table>
<thead>
<tr>
<th>Procedure</th>
<th>h/task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment planning</td>
<td>0.5</td>
</tr>
<tr>
<td>Treatment delivery</td>
<td>1.0</td>
</tr>
</tbody>
</table>

medical physics

<table>
<thead>
<tr>
<th>Procedure</th>
<th>h/task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily quality assurance</td>
<td>0.2</td>
</tr>
</tbody>
</table>

radiotherapy

<table>
<thead>
<tr>
<th>Procedure</th>
<th>h/task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily treatment verification</td>
<td>0.5</td>
</tr>
<tr>
<td>Treatment delivery</td>
<td>1.0</td>
</tr>
</tbody>
</table>

SAR

<table>
<thead>
<tr>
<th>Procedure</th>
<th>h/task</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAR</td>
<td>0.25</td>
</tr>
</tbody>
</table>

other

<table>
<thead>
<tr>
<th>Procedure</th>
<th>h/task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other</td>
<td>0.05</td>
</tr>
<tr>
<td>Procedure</td>
<td>FTE</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
</tr>
<tr>
<td>General prostate</td>
<td>0.2</td>
</tr>
<tr>
<td>Image guided biopsies</td>
<td></td>
</tr>
<tr>
<td>2D ultrasound</td>
<td>0.15</td>
</tr>
<tr>
<td>CT simulation for 3D</td>
<td>0.2</td>
</tr>
<tr>
<td>MRI guided biopsy</td>
<td>0.1</td>
</tr>
<tr>
<td>Pre-insertion ultrasound</td>
<td>0.2</td>
</tr>
<tr>
<td>Treatment planning/brachytherapy</td>
<td></td>
</tr>
<tr>
<td>Manual calculation</td>
<td>0.2</td>
</tr>
<tr>
<td>3D (Irradiation)</td>
<td>2</td>
</tr>
<tr>
<td>3D</td>
<td>1.5</td>
</tr>
<tr>
<td>Brachytherapy plan</td>
<td>0.5</td>
</tr>
<tr>
<td>Washout/bolus delivery MRI</td>
<td>0.5</td>
</tr>
<tr>
<td>Radiation therapy delivery/verification</td>
<td>1</td>
</tr>
<tr>
<td>Radiation therapy treatment/over</td>
<td></td>
</tr>
<tr>
<td>List of equipment/technology or area</td>
<td></td>
</tr>
<tr>
<td>List of specific complex techniques</td>
<td></td>
</tr>
</tbody>
</table>
Summary

The models and data sets are currently undergoing revision and final review.

The IAEA spreadsheet model is highly complex and comprehensive, but difficult to implement.

There is some concern the final model will be dominated by staffing levels in developed countries and not reflect the dominate worldwide reality of practices.

Publication date is anticipated later this year (2012).
AAMD Workforce Study

• The AAMD Workforce Study Consists of Five Components:
 • Membership Survey (Similar to that conducted by The Center for Health Workforce Studies, School of Public Health, University at Albany)
 • Workforce Survey (Similar to the Abt III 2008 Report)
 • Supply and Demand Study (Similar to Future trends in the supply and demand for radiation oncology physicists, Michael D. Mills, Judah Thornewill, and Robert Esterhay, JACMP (11) 2, 2010.)
 • Complexity Survey (conducted of professional colleagues of medical dosimetrists)
 • Interviews (conducted with selected representatives of the medical dosimetry community)
<table>
<thead>
<tr>
<th>Patient Caseload Description / FTE Staff Employed</th>
<th>Minimum</th>
<th>Q1</th>
<th>Median</th>
<th>Q3</th>
<th>Maximum</th>
<th>Mean</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient caseload of institution for the most recent year for which data were available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of new patients (teletherapy and brachytherapy) treated</td>
<td>112</td>
<td>298</td>
<td>452</td>
<td>720</td>
<td>6648</td>
<td>744</td>
<td>21</td>
</tr>
<tr>
<td>Number of total patients (teletherapy and brachytherapy) treated at institution</td>
<td>182</td>
<td>337</td>
<td>563</td>
<td>899</td>
<td>7165</td>
<td>1063</td>
<td>21</td>
</tr>
<tr>
<td>Percentage of total patients treated on most heavily utilized teletherapy unit</td>
<td>33%</td>
<td>55%</td>
<td>82%</td>
<td>98%</td>
<td>100%</td>
<td>75%</td>
<td>22</td>
</tr>
<tr>
<td>Number of total patients (teletherapy and brachytherapy) per QMD</td>
<td>91</td>
<td>198</td>
<td>245</td>
<td>326</td>
<td>563</td>
<td>261.8</td>
<td>19</td>
</tr>
<tr>
<td>Patient treatment fractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of patient treatments done on most heavily utilized teletherapy unit</td>
<td>250</td>
<td>1,061</td>
<td>5,678</td>
<td>6,862</td>
<td>93,995</td>
<td>8,662</td>
<td>21</td>
</tr>
<tr>
<td>Number of teletherapy patient treatments at institution</td>
<td>345</td>
<td>2,427</td>
<td>10,157</td>
<td>15,034</td>
<td>143,615</td>
<td>16,140</td>
<td>21</td>
</tr>
<tr>
<td>Number of FTE staff employed by institution:</td>
<td>Minimum</td>
<td>Q1</td>
<td>Median</td>
<td>Q3</td>
<td>Maximum</td>
<td>Mean</td>
<td>N</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>----</td>
<td>--------</td>
<td>----</td>
<td>---------</td>
<td>-------</td>
<td>----</td>
</tr>
<tr>
<td>Medical dosimetrists</td>
<td>1.00</td>
<td>1.00</td>
<td>2.00</td>
<td>3.00</td>
<td>50.00</td>
<td>4.28</td>
<td>23</td>
</tr>
<tr>
<td>Medical physicists</td>
<td>0.00</td>
<td>1.00</td>
<td>1.40</td>
<td>2.00</td>
<td>70.00</td>
<td>4.78</td>
<td>23</td>
</tr>
<tr>
<td>Physics assistants</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>11.00</td>
<td>0.88</td>
<td>23</td>
</tr>
<tr>
<td>Radiation oncologists</td>
<td>1.00</td>
<td>1.00</td>
<td>2.00</td>
<td>3.00</td>
<td>60.00</td>
<td>4.62</td>
<td>23</td>
</tr>
<tr>
<td>Brachytherapy technologists</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>4.00</td>
<td>0.18</td>
<td>23</td>
</tr>
<tr>
<td>Mechanical engineers</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>6.00</td>
<td>0.72</td>
<td>23</td>
</tr>
<tr>
<td>Radiation therapists</td>
<td>3.00</td>
<td>5.00</td>
<td>6.00</td>
<td>9.00</td>
<td>99.00</td>
<td>10.64</td>
<td>23</td>
</tr>
<tr>
<td>Radiation oncology nurses</td>
<td>0.00</td>
<td>1.50</td>
<td>2.00</td>
<td>3.00</td>
<td>30.00</td>
<td>3.43</td>
<td>23</td>
</tr>
<tr>
<td>CPT Code</td>
<td>Procedure Description</td>
<td>2007 Abt Survey Median QMP Total</td>
<td>2011 Dosimetry Survey Median QMD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77295</td>
<td>Therapeutic radiology simulation – (3 – D)</td>
<td>135.7</td>
<td>305.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77300</td>
<td>Basic dosimetry calculation</td>
<td>563.2</td>
<td>1092.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77301</td>
<td>IMRT treatment planning</td>
<td>276.3</td>
<td>312.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77305</td>
<td>Simple isodose plan</td>
<td>6.2</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77310</td>
<td>Intermediate isodose plan</td>
<td>2.3</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77315</td>
<td>Complex isodose plan</td>
<td>100.9</td>
<td>111.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77321</td>
<td>Special teletherapy port plan</td>
<td>24.6</td>
<td>19.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77326</td>
<td>Simple brachytherapy isodose plan</td>
<td>2.5</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77327</td>
<td>Intermediate brachytherapy isodose plan</td>
<td>2.7</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77328</td>
<td>Complex brachytherapy isodose plan</td>
<td>66.9</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77331</td>
<td>Special dosimetry</td>
<td>37.1</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77332</td>
<td>Simple treatment device</td>
<td>3.1</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77333</td>
<td>Intermediate treatment device</td>
<td>1.4</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77334</td>
<td>Complex treatment device</td>
<td>194.4</td>
<td>612.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77336</td>
<td>Continuing medical physics consultation</td>
<td>1024.0</td>
<td>365.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supply and Demand, QMD versus QMP
QMDs and QMPs – some thoughts

• Comparing the service mix and the work hours of the median QMD and QMP, there is almost an exact overlap of both services and work hours by code.

• Staffing of the QMD and QMP also match closely in the Abt study, the Battista study, the IAEA study and the ACR/ASTRO Radiation Oncology Accreditation Program Requirements Guide.

• Supply and demand curves are different for QMDs and QMPs. However, both show that as additional qualifications to take the professional boards are emerging and as the baby boom generation retires, there are anticipated shortages in the supply of both professions toward the end of the decade.
Diagnostic Workforce Study

- Designed by Michael Mills and Ed Nickoloff
- Created October 12, 2011
- Survey opened on November 8 2012
- Closed survey on February 27, 2012 with 460 responses
- Purpose was to measure medical physicist staffing and workload by type of equipment
- Purpose was also to assign a medical physicist cost per patient procedure for each type of equipment
Diagnostic Workforce - Analysis

- All calculations are performed for each individual medical physicist
 - Identify the medical physicist by specialty (% diagnostic, nuclear medicine, radiation oncology, and health physics)
 - Identify the medical physicist by vocation (% clinical, research, administration, teaching, other responsibilities)
- Survey and report median equipment costs: detectors, phantoms, calibrations
- Determine a median annual equipment cost
- Determine an equipment mix annual equipment cost for each medical physicist
- Survey and report the equipment mix profile – types and numbers for each medical physicist
- Survey and report the average number of procedures for the equipment serviced
Diagnostic Workforce – Analysis (cont.)

- Report the initial commissioning hours by equipment type
- Report the annual support hours by equipment type
- Calculate annual equipment and labor costs to service each equipment type
- Calculate the median medical physicist equipment and labor costs by equipment type
- Calculate the median service profile for a medical physicist supporting imaging equipment
- Calculate the median cost per patient procedure by equipment type consequent to medical physicist services
- Calculate a staffing model by equipment profile based on the equipment mix and productivity of the median medical physicist
A single unit/system/program is what fraction of an FTE?

<table>
<thead>
<tr>
<th>Type of unit/system/program</th>
<th>FTE fraction</th>
<th>FTE Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiographic</td>
<td>0.007</td>
<td>0.010</td>
</tr>
<tr>
<td>Mobile Radiographic</td>
<td>0.003</td>
<td>0.005</td>
</tr>
<tr>
<td>Fluoroscopy</td>
<td>0.007</td>
<td>0.010</td>
</tr>
<tr>
<td>Mobile Fluoroscopy</td>
<td>0.007</td>
<td>0.010</td>
</tr>
<tr>
<td>Angiography</td>
<td>0.009</td>
<td>0.010</td>
</tr>
<tr>
<td>Mammography</td>
<td>0.016</td>
<td>0.020</td>
</tr>
<tr>
<td>CT</td>
<td>0.017</td>
<td>0.020</td>
</tr>
<tr>
<td>MRI</td>
<td>0.014</td>
<td>0.020</td>
</tr>
<tr>
<td>Ultrasound</td>
<td>0.003</td>
<td>0.005</td>
</tr>
<tr>
<td>PACS</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>Nuclear Medicine Scintigraphy</td>
<td>0.013</td>
<td>0.015</td>
</tr>
<tr>
<td>Nuclear Medicine SPECT</td>
<td>0.016</td>
<td>0.020</td>
</tr>
<tr>
<td>Nuclear Medicine PET-CT</td>
<td>0.018</td>
<td>0.020</td>
</tr>
<tr>
<td>Nuclear Medicine Computer Analysis</td>
<td>0.016</td>
<td>0.020</td>
</tr>
<tr>
<td>Nuclear Medicine Radiopharmacy</td>
<td>0.007</td>
<td>0.010</td>
</tr>
<tr>
<td>Nuclear Medicine Radiation Oncology</td>
<td>0.016</td>
<td>0.020</td>
</tr>
<tr>
<td>Type of unit/system/program</td>
<td>Pgm $/Proc.</td>
<td># Proc.</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Radiographic</td>
<td>$0.28</td>
<td>225000</td>
</tr>
<tr>
<td>Mobile Radiographic</td>
<td>$0.27</td>
<td>80000</td>
</tr>
<tr>
<td>Fluoroscopy</td>
<td>$1.72</td>
<td>25000</td>
</tr>
<tr>
<td>Mobile Fluoroscopy</td>
<td>$1.54</td>
<td>18750</td>
</tr>
<tr>
<td>Angiography</td>
<td>$1.80</td>
<td>15000</td>
</tr>
<tr>
<td>Mammography</td>
<td>$1.37</td>
<td>52500</td>
</tr>
<tr>
<td>CT</td>
<td>$0.66</td>
<td>150000</td>
</tr>
<tr>
<td>MRI</td>
<td>$0.80</td>
<td>75000</td>
</tr>
<tr>
<td>Ultrasound</td>
<td>$0.46</td>
<td>37500</td>
</tr>
<tr>
<td>PACS</td>
<td>$0.02</td>
<td>300000</td>
</tr>
<tr>
<td>Nuclear Medicine Scintigraphy</td>
<td>$1.90</td>
<td>6000</td>
</tr>
<tr>
<td>Nuclear Medicine SPECT</td>
<td>$3.72</td>
<td>6250</td>
</tr>
<tr>
<td>Nuclear Medicine PET-CT</td>
<td>$4.20</td>
<td>3750</td>
</tr>
<tr>
<td>Nuclear Medicine Computer Analysis</td>
<td>$2.95</td>
<td>4500</td>
</tr>
<tr>
<td>Nuclear Medicine Radiopharmacy</td>
<td>$0.43</td>
<td>10000</td>
</tr>
<tr>
<td>Nuclear Medicine Radiation Oncology</td>
<td>$24.42</td>
<td>200</td>
</tr>
</tbody>
</table>
Diagnostic Workforce Summary

- We expected to see larger differences between physicists working in academic centers and those serving community hospitals.
- Most medical physicists providing imaging and nuclear medicine services are about 50% clinical.
- Other duties are administration, teaching and research.
- There are a few (about 10% of the total reporting) highly productive full time consulting medical physicists who are 100 percent clinical and demonstrate about twice the median productivity.
- These individuals do not impact the median numbers reported.
Other Proposed Workforce Studies

• Academic Workforce Study
 • While much effort has been devoted to examining how clinical medical physicists spend their time and to supply and demand issues, the academic community has not been studied
 • The research community is dependent on the availability of funding from both the government and commercial sources
 • Little information exists respecting the historic available of funding nor of the numbers of full-time research positions

• Proton Facility Workforce Study
Implications of workforce assessment for residency programs
Why is radiation oncology profitable?

- The profitability of radiation oncology is largely based off of one, single procedure – the Medicare IMRT code 77418

- In 2003, one fraction of IMRT was judged to equal $\frac{1}{7}$th the reimbursement of a liver transplant and $\frac{1}{3}$rd of that of an aortic valve replacement

- One IMRT fraction was placed on par with a rib removal or bunion surgery

- The beauty of IMRT is that while most people have only a finite number of livers, aortic valves, ribs, and bunions, each cancer patient treated with IMRT typically gets 30-40 treatments

- So a course of IMRT cancer therapy costs the system as much as transplanting 5 livers, and removing 30 bunions

- CMS made an attempt to cut IMRT by ~ 38% in 2009 as a result of a review of broader imaging codes – ASTRO and other groups stopped the cuts

- This year, 2012, CMS is proposing to cut IMRT reimbursement to physician owned freestanding centers by ~ 40%
MS Medical Physicists accepted to CAMPEP Residency Programs

• Accepted:
 - ******************

• Not Accepted
 - ******************
 - ******************
 - ******************
 - ******************
 - ******************
 - ******************
 - ******************
 - ******************
PhD Medical Physicists accepted to CAMPEP Residency Programs

• Accepted

• Not Accepted

Summary and Conclusions

- Multiple therapy physics workforce studies exist from US, Canadian and International sources.
- There is general agreement that one medical should be responsible for about 250 patients annually for a typical treatment facility.
- The ASTRO and Canadian models give accurate and consistent measures of staffing for those centers that provide large numbers of special procedures.
- Large numbers of medical physicists have been entering the certification process in advance of the 2014 CAMPEP residency completion requirement deadline.
Summary and Conclusions

• Radiation oncology is not profitable because of physics procedures — these do well to break even
• Radiation oncology profits depend almost entirely on 77418 — IMRT treatment delivery; this code is under attack
• If radiation oncology fails to remain profitable, all the supply and demand models and all the workforce assessments may be meaningless because no one will want to provide the services
• It is not ethical for highly successful MS students to be denied the opportunity to take the ABR Certification examinations because we mismanaged the educational process
• We must make residency opportunities available for our MS students now
Thank You!

"This is our plan for the next 1,000 years."